A Functional Equation Characterizing Monomial Functions Used in Permanence Theory for Ecological Differential Equations
نویسنده
چکیده
It is well known that monomial average Liapunov functions of the form R(x1, x2, . . . , xn) = r0 ∏n i=1 x ri i (ri > 0, i = 0, 1, 2, . . . , n) play an eminent role in the permanence theory of ecological (or Kolmogorov) differential equations. A functional equation characterizing the above class of functions is presented.
منابع مشابه
Robust Permanence for Ecological Differential Equations, Minimax, and Discretizations
We present a sufficient condition for robust permanence of ecological (or Kolmogorov) differential equations based on average Liapunov functions. Via the minimax theorem we rederive Schreiber’s sufficient condition [S. Schreiber, J. Differential Equations, 162 (2000), pp. 400–426] in terms of Liapunov exponents and give various generalizations. Then we study robustness of permanence criteria ag...
متن کاملAn Efficient Numerical Algorithm For Solving Linear Differential Equations of Arbitrary Order And Coefficients
Referring to one of the recent works of the authors, presented in~cite{differentialbpf}, for numerical solution of linear differential equations, an alternative scheme is proposed in this article to considerably improve the accuracy and efficiency. For this purpose, triangular functions as a set of orthogonal functions are used. By using a special representation of the vector forms of triangula...
متن کاملON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملA Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative
The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...
متن کامل